On distance-regular graphs with smallest eigenvalue at least −m

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On distance-regular graphs with smallest eigenvalue at least -m

A non-complete geometric distance-regular graph is the point graph of a partial geometry in which the set of lines is a set of Delsarte cliques. In this paper, we prove that for fixed integer m ≥ 2, there are only finitely many non-geometric distance-regular graphs with smallest eigenvalue at least −m, diameter at least three and intersection number c2 ≥ 2.

متن کامل

Fat Hoffman graphs with smallest eigenvalue at least $-1-τ$

In this paper, we show that all fat Hoffman graphs with smallest eigenvalue at least −1−τ , where τ is the golden ratio, can be described by a finite set of fat (−1 − τ)-irreducible Hoffman graphs. In the terminology of Woo and Neumaier, we mean that every fat Hoffman graph with smallest eigenvalue at least −1−τ is anH-line graph, where H is the set of isomorphism classes of maximal fat (−1−τ)-...

متن کامل

Distance-regular Cayley graphs with least eigenvalue -2

We classify the distance-regular Cayley graphs with least eigenvalue −2 and diameter at most three. Besides sporadic examples, these comprise of the lattice graphs, certain triangular graphs, and line graphs of incidence graphs of certain projective planes. In addition, we classify the possible connection sets for the lattice graphs and obtain some results on the structure of distance-regular C...

متن کامل

Distance-regular graphs with an eigenvalue

It is known that bipartite distance-regular graphs with diameter D > 3, valency k > 3, intersection number c2 > 2 and eigenvalues k = θ0 > θ1 > · · · > θD satisfy θ1 6 k− 2 and thus θD−1 > 2− k. In this paper we classify non-complete distanceregular graphs with valency k > 2, intersection number c2 > 2 and an eigenvalue θ satisfying −k < θ 6 2 − k. Moreover, we give a lower bound for valency k ...

متن کامل

Notes on graphs with least eigenvalue at least -2

A new proof concerning the determinant of the adjacency matrix of the line graph of a tree is presented and an invariant for line graphs, introduced by Cvetković and Lepović, with least eigenvalue at least −2 is revisited and given a new equivalent definition [D. Cvetković and M. Lepović. Cospectral graphs with least eigenvalue at least −2. Publ. Inst. Math., Nouv. Sér., 78(92):51–63, 2005.]. E...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series B

سال: 2010

ISSN: 0095-8956

DOI: 10.1016/j.jctb.2010.04.006